Role of synaptic dynamics and heterogeneity in neuronal learning of temporal code.

نویسندگان

  • Ziv Rotman
  • Vitaly A Klyachko
چکیده

Temporal codes are believed to play important roles in neuronal representation of information. Neuronal ability to classify and learn temporal spiking patterns is thus essential for successful extraction and processing of information. Understanding neuronal learning of temporal code has been complicated, however, by the intrinsic stochasticity of synaptic transmission. Using a computational model of a learning neuron, the tempotron, we studied the effects of synaptic unreliability and short-term dynamics on the neuron's ability to learn spike timing rules. Our results suggest that such a model neuron can learn to classify spike timing patterns even with unreliable synapses, albeit with a significantly reduced success rate. We explored strategies to improve correct spike timing classification and found that firing clustered spike bursts significantly improves learning performance. Furthermore, rapid activity-dependent modulation of synaptic unreliability, implemented with realistic models of dynamic synapses, further improved classification of different burst properties and spike timing modalities. Neuronal models with only facilitating or only depressing inputs exhibited preference for specific types of spike timing rules, but a mixture of facilitating and depressing synapses permitted much improved learning of multiple rules. We tested applicability of these findings to real neurons by considering neuronal learning models with the naturally distributed input release probabilities found in excitatory hippocampal synapses. Our results suggest that spike bursts comprise several encoding modalities that can be learned effectively with stochastic dynamic synapses, and that distributed release probabilities significantly improve learning performance. Synaptic unreliability and dynamics may thus play important roles in the neuron's ability to learn spike timing rules during decoding.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of Adrenergic Receptors on Neural Excitability and Synaptic Plasticity: A Narrative Review

Adrenergic receptors have an important role in neural excitability and synaptic plasticity. Despite a lot of studies on these receptors, their exact role in brain disorders accompanied with hyperexcitability has not been determined. There are also controversies on their role in synaptic plasticity. In this review article, the important studies done in this regard have been reviewed to achieve a...

متن کامل

تأثیر تزریق داخل بطنی متفورمین بر یادگیری و حافظه فضایی موش‌های آلزایمری مدل استرپتوزوسین

Background and objective: Insulin and its receptor are located in the central nervous system where it regulates many important processes such as neural proliferation, apoptosis, synaptic transmission, neuronal survival, synaptic plasticity, learning and memory. Alzheimer's disease (AD) is characterized by the accumulation of extracellular amyloid-β (Aβ) plaques, and intracellular aggregation of...

متن کامل

P166: The Role of Interlukin-6 of Immune Cells in Neuronal Dysfunctions in the Autism Disease

About thirty years ago, the interlukin-6 (IL-6) which is the proinflammatory cytokine, was detected as the differentiation factor of B cell. IL-6 is able to induce maturation in B cells and as a result, B cells achieve the ability to produce antibodies. In addition to immune responses, the role of IL-6 has been known in neurogenesis (neurons and glial cells). The studies have showed that the ab...

متن کامل

P26: Long-Term Potentiation: The Mechanisms of CaMKII in Lerarning and Memory

Long-term potentiation (LTP) is a form of activity dependent plasticity that induced by high-frequency stimulation or theta burst stimulation and results in synaptic transmission. Several Studies have been shown that LTP is one of the most important processes in the CNS that plays an important role in learning and memory formation. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a major...

متن کامل

P15: Hippocampus-Neocortical Communication in Learning

The hippocampus is located in the medial temporal lobe and is a part of the forebrain. It plays a critical role in formation of declared memories. The hippocampus is banana­-shaped and communicates with all parts of neocortex. Reptiles and birds have structures like hippocampus that potentially serve as navigation functions. During the mammalian evolution, the neocortex has a large expansio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 110 10  شماره 

صفحات  -

تاریخ انتشار 2013